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Dynamics and Percolation in the Immune System 
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The immune system is studied as a dynamical system. A lattice model for the 
immune system's memory without percolation is given. An upper limit for the 
probability of.the existence of the memory state is derived. It agrees with the 
numerical results. 

1. INTRODUCTION 

Biological systems are a rich source for mathematical and physical 
ideas (West, 1990). From this point of view the immune system (IS) 
(Perelson, 1988) has many interesting features, e.g., learning, pattern 
recognition, memory, etc. In this work we study two aspects of the IS. First 
we study the IS as a dynamical system. It is shown that it has the 
distinguishing feature of changing its dynamical equations with time. The 
second aspect is the memory of IS. A model on Bethe and hypercubic 
lattices in d -> 1 dimensions is given to simulate the memory of the IS. 

In Section 2 the lattice model for IS memory is studied. In Section 3 
the dynamics Of IS is discussed. 

2. A LATTICE MODEL FOR IS MEMORY 

The study of the immune system (IS) is an interesting problem in 
biology, physics, and mathematics. One of the most interesting questions is 
related to the memory of the IS. It is known that IS cells live, at most, for 
weeks. However, we know immunization against many diseases remains for 
years. Furthermore, the new IS cells have random shapes; hence they are 
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not identical to the already existing cells. Only in the case that a new clone 
is close enough to an old one will the new clone be stimulated, i.e., the state 
of memory continues. This, however, is a probabilistic event which may or 
may not happen, while immunization is an almost deterministic event. 

This poses a problem for mathematicians and physicists: to study 
dynamical systems where the evolution equations change with time. This 
kind of dynamics is called metadynamics (Farmer et al., 1986) and will be 
discussed in the next section. 

In this study we propose a lattice model for the IS memory. Lattice 
models for the IS have been proposed before to study others of its features 
(Chowdhury and Stauffer, 1992). 

We study a lattice with coordination number z. In one dimension, 
chains (z = 2) are studied. In two dimensions, a square lattice (z = 4) is 
used; in three dimensions, a simple cubic lattice (z = 6) and for d 2 3, 
hypercubic and Bethe lattices are discussed. 

The different clones of the IS are represented by the sites of the lattice. 
Whether the clones exist (or not) is represented by the occupancy (vacancy) 
of the corresponding sites. 

At each discrete time t = 1, 2 , . . . ,  T, where T is finite, each site is 
occupied (left vacant) randomly with probability p (1 - p ) .  An exception to 
this rule are stimulated sites, which will be defined as follows: If two nearest 
neighboring (nn) sites are simultaneously occupied, they stimulate each 
other. We model this by the following rule: 

Stimulation rule. If  two nn sites are occupied a t  time t, they will be 
occupied at time t + 1. However, at time t + 2 they will be included in the 
random occupation process in order to avoid continuous stimulation. 

To include the immunization we choose any site say S and impose the 
condition that it is occupied at t = 1. The system is said to have memory 
for S if at every time step T > t > 1 either S or at least one of its nn sites 
is occupied. We also require that there is no infinite cluster (percolation) in 
the system. 

The reason is that IS memory is a local effect. If  percolation (Stauffer 
and Aharony, 1992) exists, it will remove all memory effects once a new 
stimulation occurs.. 

We begin by studying the system in one dimension. For simplicity we 
temporarily neglect stimulation. The probability that S or any of its nn 
sites is occupied at any time step is P1, where 

e l  = 1 --  (1 __p)3 (1)  

Thus an estimation for the probability that a memory state exists (PM1) is 
Pt > 0.5, i.e., 

PM~ > 0.206, PM1 < Pc (2) 
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where Pc ( =  1) is the critical percolation probability in one dimension. 
Notice that we are considering only systems at finite time intervals (there 
are no creatures that live forever), hence it is sufficient that at each time 
step the memory state probability should be greater than or equal to 0.5; 
therefore we set P~ > 0.5. 

A better estimation for the probability of the memory state (PM) is to 
include stimulation. This is done by studying two consecutive time steps, 
say t and t + 1. Let El (E2) be the event that there is no (there is) nn 
occupied sites given that at least one site is occupied at time t. Then the 
probabilities of E~ and E 2 are 

Prob(E~) = 3pq2 + p2q, q = 1 - p  (3a) 

Prob(E2) = 2p2q + p3 (3b) 

At time t + 1 stimulation implies that the event E2 guarantees that the 
occupied sites will remain occupied. Thus after two time steps the probabil- 
ity that there is at least one occupied site is 

P2 = ( 3pq 2 +P2q)[1 - (1 _p)3] + 2pZq + p3 (4) 

The maintenance of the memory state implies P2 > (0.5) 2, where the square 
in the RHS is due to the two time steps. This gives an upper limit (UPM) 
for the probability of the memory state in one dimension, 

UPM = 0.188 (4') 

The reason that this is an upper limit is that in the previous discussion the 
stimulated sites at t -  1 have not been included. Furthermore, the initial 
condition that S is occupied at t = 1 has not been included. 

We have simulated the 1D model using a Monte Carlo method (Jain, 
1992) and obtained 

PM =0.1 (5) 

where a chain of length 40 has been used, S is chosen to be site number 
20 to avoid boundary effects, and the system has been studied up to 
t = 100. 

Studying the 2D system, the first (no stimulation) estimate for PM is 
obtained using-P1 > 0.5, where 

P1 = 1 - ( 1  _p)5 (6a) 

i.e., 

PM1 = 0.129, PMI < Pc, Pc = 0.5 (6b) 
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Including stimulation and following the 1D procedure, one gets 

Prob(E1) = 5pq 4 + 6p2q 3 + 4paq 2 + p4q, q = 1 - p  (7a) 

Prob(E2) = 4p2q 3 + 6p3q 2 + 4p4q -F p 5 (7b)  

P2 = (5pq 4 + 6p2q 3 + 4p3q 2 +p2q)[ 1 -- (1 _p)5] 

+ 4p2q3 + 6p3q2 + 4p4ql +p5 (7C) 

Thus the upper limit UPM for the probability of the memory state in two 
dimensions is 

UPM = 0.121 (8) 

Using numerical simulation, we obtained 

PM = 0.07 (9) 

where a 15 x 15 square lattice has been used, S is chosen to be the (8, 8)th 
site, and t = 50. 

Generalizing to d > 3, the first (no stimulation) estimate for the 
memory state for a (hyper)cubic lattice and Bethe lattice with coordination 
number z is given by P1 > 0.5, where 

P I =  1 - ( 1  _p)~+l (lOa) 

Thus 

PM l = 1 - (0.5) l/(z+ 1) (10b) 

An estimate for UPM is given by solving the equation 

P2 = (0.5) 2 ( 1 la) 

P2=[1-(1-P)Z+I][  (z+l)pq~+ ~ 

z + l  
+ E C(z, r)p'q~ +1 - - r  (1 lb) 

r=2. 

where the coefficients d(z, r) and C(z, r) are given by 

"d(z,r)=(;)=z,/[rl(z-r),] ,  r = 2 , 3  . . . . .  z (12a) 

C(z,r) ( z + l ) ( z )  = - , r = 2 ,  3 . . . . .  z ( 1 2 b )  
r r 

C(z, z + 1) = 1 (12c) 
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Now we discuss the existence of the memory state. It  is clear that 
UPM > PM and that for many lattices we have Pc > UPM, e.g., 1D and 
2D square lattices; therefore we obtain the following existence theorem for 
the memory state of  the IS: 

Theorem. Let Pc be the critical probability of  the site percolation 
problem on a graph with coordination number  z; then there is a memory 
state so long as Pc > PM. 

Corollary. There is a memory  state in 1D and 2D square lattices and 
3D simple cubic lattices. 

3. M E T A D Y N A M I C S  OF IS 

The immune system (IS) is a distinguished dynamical system (Farmer  
et al., 1986). I t  has the ability to recruit new clones and to eliminate some 
clones from the system. This causes the system's equations to change with 
time. This is the distinguishing feature of  metadynamics. An ordinary 
discrete dynamical system is defined by the equation 

z ,+~=f(r ,  zn), n =  1 , 2 , 3 , . . .  (13) 

where r = (r~, r2 . . . . .  rz) is the set of  parameters of  the system. Notice that 
r and f are the same for all n. For  a metadynamical  system (MDS) 
describing the IS, f or r changes slowly compared to n. Therefore we define 
the MDS as follows: 

Definition 1. The MDS is defined by 

z , + ,  = f . (z , )  (14) 

where (i - 1)N < n < iN, i -- 1, 2 . . . . .  and N is a large positive integer. N 
is defined as follows: For  any attractor z* for f~(z) (considered as an 
ordinary dynamical system) and for any E > 0 then if the sequence {z, }, 
(i - 1)N < n < iN, exists in the basin of  attraction of  z*, then there is 
N1 < iN such that n > N1 implies Iz, - z* ] < e. This means that for all i the 
transient system 

z , + l = f ( z , ) ,  ( i - 1 ) N < n < i N  

comes very close to its asymptotic behavior. Only the systems for which 
such N exists will be considered here. 

In the IS the equations usually preserve their form, only the parame- 
ters change as the clones change. We will concentrate on this type of meta- 
dynamics. 
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As an example, the MDS corresponding to the logistic map can be 
defined by 

zn+l=rizn(1-z , ) ,  ( i - 1 ) N < n < i N  (15) 

where {r;} are real, positive parameters. Numerical study shows that N can 
be chosen to be greater than or equal to 50. 

A corresponding MDS for the Mandelbrot map is 

z , + l = z ~ + C i ,  ( i - 1 ) N < n < i N  (16) 

~where {Ci } are complex parameters. 

Definition 2. (a) An n-periodic point z* is defined by 

z* =f!")(z* ), (i - I)N < n < iN (17) 

where f~"~ = f , f ,  . . .  , f  n-times. If z* is independent of i, then it is a global 
n-periodic point. 

(b) An attracting (repelling) n-periodic point z* satisfies 

](af}'O/az)z=zel< 1 (>1 )  

(c) The Julia set for the MDS (13) is the closure of repelling periodic 
points. 

From now on we consider the systems (15) and (16). The behavior of 
the MDS (15) and (16) is closely related to the asymptotic behavior of the 
parameter sequences {r~ } and {C,- }, respectively. 

Definition 3. A slowly alternating dynamical system corresponds to the 
parameter sequences (r l, r2, rl, r2 . . . .  ) and (Cl, C2, Cl, C2,..  �9 ) for the 
systems (15) and (16), respectively. 

A fast alternating dynamical system, corresponding to N = 1, has been 
defined and used (Ahmed, 1992) to study ac conductivity. 

It is straightforward to prove the following proposition: 

Proposition. (a) If  the sequence {r~) is convergent, then the behavior 
of MDS is determined by r, where r = l im~ ~ r~. In this case the MDS 
reduces asymptotically to an ordinary dynamical system. 

(b) In the slowly alternating MDS corresponding to (15), if 
1 < rl, r2 < 3, then the system oscillates between the basins of attraction of 
one of the following attractors: 1 - 1/rl, 1 - l/r2. The attractor z = 0 is a 
global attractor tbr this system. 

(c) Since the point at infinity is a global superattractor for the system 
(16), the Julia set for this system is contained in a bounded subset of the 
complex plane. 

(d) In the MDS (16), if the sequence {(7,.} is a subset of the Mandel- 
brot set, then the MDS is bounded. 
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It  is interesting that  the oscillatory behavior  shown in par t  (b) o f  the 
proposi t ion  is similar to observations o f  the immune system (Lundkvis t  et 

al., 1989). 
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